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Abstract

This paper presents LittleLog, a general-
purpose log compression and query service that
allows for permanent, lossless compressed stor-
age while enabling queries directly on the com-
pressed log files. LittleLog’s motivation comes
from the increased amount of data produced
in recent years. With massive storage systems
producing data, log files are being generated
at a similar rate. To address this new devel-
opment, LittleLog focuses on the compression
and querying of log files produced by many of
these systems.

Previous compression algorithms have im-
pressive good compression ratios, but they do
not enable querying on a compressed data
space. This limitation requires log files (or any
file in general) to be first uncompressed and
then queried. Our results show that we are
able to query against log files with speeds up
to 97% faster than grep occurrence count,
65% faster than grep line count while hav-
ing compression ratios around 50% - all exe-
cuting directly on compressed data.

1 Introduction

This paper presents LittleLog, a log compres-
sion service that enables querying on a com-
pressed data space.

Logs are produced during the execution of
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both user applications and components of a
large system. With the ever increasing rate
of data being produced and processed on a
daily basis, the need for logs to account for
each action and create a traceback is essen-
tial for any recovery system. Examples of this
include web servers [15], data processing en-
gines [19], databases[12], and distributed file
systems[7, 17], among others.

Logs can come in many different formats.
Some are private to certain systems whereas
others are public and use popular formats such
as CLF[13], NCSA, W3C and others. Rather
than trying to tailor for specific log formats,
LittleLog generalizes to work for any log for-
mat. To focus in on the compression, we lever-
age Succinct’s algorithms and tailor optimiza-
tions and functionality for logs. Succinct [5]
presents a method for compression and enables
querying compressed data directly, yet it pos-
sesses some limitations.

To tailor for log files, LittleLog exposes an
API that extends upon Succinct’s API. Aside
from being able to extract simply the offsets in
a file as Succinct does, LittleLog extracts en-
tire lines for a specific log file entry. This gives
LittleLog the ability to simulate popular search
tools for log files, such as grep [2] and wc [3].

For large log files, LittleLog utilizes a config-
urable parameter A that is known as the shard
size. This is used to specify how the input log
file will be divided into shards of size roughly



A. Different values of A affect the shard com-
pression ratio and overall query latency in dif-
ferent ways. This is analyzed in further detail
in section 5. The introduction of A is important
for scalability. One of Succinct’s downfalls is
its inability to handle files larger than 2 GB.

To summarize, LittleLog contributes the fol-
lowing:

e We extend Succinct’s algorithms and tailor
querying on compressed data and apply it
to a more realistic use case.

e LittleLog is configurable to specify a pa-
rameter A that will shard an input file to
chunks of size A to prepare for compres-
sion and it accounts for scalability.

2 Motivation and Background

Log file entries are logically structured pieces
of events that are divided into different fields
usually delimited by linebreaks (newline char-
acters). A field in a log entry describes infor-
mation for a certain transaction such as a date,
IP address, action performed, etc. A log file
consists of many different log entries captured
or generated by some system.

The primary motivation for this system is
to be able to query logs with low latency and
full accuracy while also reducing the over-
head required to do log processing such as re-
trieval, storage, compression, and decompres-
sion. Tools used for log processing often re-
quire complex parsing algorithms and schemas
to understand the type of logs that are being
processed [8].

Today, data is being generated at an ever in-
creasing rate. As systems become grow in com-
plexity, the quantity of logs generated scales up
[4] as well. An important goal of LittleLog is
to minimize storage space and query latency in
order to hasten the process of disaster recovery
and gathering statistics on large-scale systems.

Research focusing on compression algo-
rithms strives to generalize to any type of file.
To the best of our knowledge, compression on
log files is not heavily researched. Recent pa-
pers seem to focus on compressing the number
of bytes per line using compression ideas based
on text similarity [16, 10]. However, all these
methods require decompression during query-
ing and therefore contribute to increased query
latency. Further, these algorithms do not ac-
count for text that is dissimilar and decompress-
ing the text could result in errors based on the
parsing scheme used.

LittleLog aims to focus on true permanent
compression for log files. Specifically, we
eliminate the need to decompress when query-
ing log files. This reduces the extra overhead
that many traditional querying schemes require
[16].

3 Related Work

Our work relies on Succinct, a general-
purpose compression algorithm. Succinct al-
lows queries to be executed directly on a com-
pressed data space. However, the query re-
sults that are returned are offsets within the file.
While this is useful for locating data within the
original log file, it does not provide the entire
log entry which can be useful for disaster re-
covery or system tracebacks.

A naive approach to log compression and
querying can be achieved through gzip and
grep, which is analyzed in section 5. We see
that multiple [6, 8, 20] compression algorithms
exist for repeated data, but querying on these is
infeasible due to the format of the compressed
data.

Querying against compressed data does al-
ready exist, but the approach sacrifices some
efficiency. This is best shown through the us-
age of bzgrep [1] on bzip2 files. bzgrep al-
lows querying on bzip2 files, but the data is
first decompressed and then fed into grep. This
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Figure 1: Architecture Design

incurs some extra overhead and resources may
be wasted if querying is done constantly on the
same compressed file.

4 Architecture

LittleLog is broken into 2 components:
compression and search, which we expose
in an API for ease of use.

41 API

f = compress(raw_input_log)
[11, ...] = search(f,query,limit)
occurrences = count (f,query,limit)

Figure 2: API exposed by LittleLog

LittleLog exposes an API that allows develop-
ers ease of use. The API exposes three meth-
ods: compress, search, and count.

The compress function takes in raw in-
put log files and writes compressed, sharded
succinct files to disk. In this step, we fully

utilize Succinct’s compression algorithm. Once
compressed, there is no practical need to un-
compress since querying can be done directly
on the compressed log files, thus permanently
saving storage space. The format of the com-
pressed structure is further explained in section
4.2.

search is a powerful method that is bor-
rowed from Succinct and further improved
upon in LittleLog. Succinct’s search function
returns all offsets within the uncompressed file
satisfying the query by executing the query
against the compressed file. While this may
be useful in some scenarios, it is limited for
practical applications. LittleLog extends this
by returning the entire line satisfying the query
within the uncompressed file. This is arguably
a more powerful and serves to be a more prac-
tical usage of querying since offsets within a
file still require manual searching to extract any
useful information. In addition, this simulates
the behavior of industry-leading tools such as
grep.

In order to prevent excessive terminal out-
put, LittleLog offers an additional parame-
ter of 1imit which acts as an output limiter.
Specifically, the number of log entries given
by search will be no greater than 1imit. By
utilizing 1imit, we drastically reduce latency
on queries when a large number of results are
yielded while still returning relevant informa-
tion about the query such as total number of
matching results. Specific system performance
is discussed in section 5.

The count method is analogous to UNIX’s
popular chaining of commands grep <query>
-o | wc -1. We separate it here into a differ-
ent method. The reason for doing this is be-
cause if simply the length of the total number
of lines returned from search was given, we
incur the overhead of finding the offsets within
the file and extracting the line containing the
offset. Rather, count employs a much faster
mechanism to return the number of occurrences
of the query within the file.



4.2 Design and Implementation

LittleLog is structurally divided into 2 sections:
the compressor and the SuccinctlLog, both ac-
cessed through the main interface. An input
file is sent through the compressor where it is
asynchronously sharded in-memory and com-
pressed utilizing Succinct’s compression algo-
rithm. The shard size is given to the compressor
via the user-specified parameter A. The optimal
value for A is ideally as high as possible, but
this is infeasible due to the high memory usage
from Succinct’s compression algorithm. This is
actually the entire basis for the existence of A.
To potentially account for large files, sharding
must be exercised [7].

Once a file has been sharded, compressed,
and written to disk, it no longer needs to be
decompressed as Succinct has enabled query-
ing to be done directly on the compressed data.
Queries are sent through the main interface
where they are asynchronously executed using
SuccinctlLogs: an in-memory representation of
the compressed log files. In our case, each Suc-
cinctLog represents a shard of the original in-
put log file. When a given query is being ex-
ecuted, it finds all offsets of the query within
the compressed file and by maintaining an in-
ternal suffix array [11, 9]. Suffix arrays (like
the one in Figure 3) themselves are an improve-
ment over suffix trees [11, 18], which some-
times can take up more space than the string
itself for operations such as substring search-
ing. Taking this into account, there are inter-
nal suffix arrays stored within every Succinct-
Log which transform strings (in our case, log
entries) into a flattened array. This array is a
sorted array that maps suffixes to their starting
index. Succinct further cuts down on this by
making their suffix arrays more space efficient
at the cost of some extra computation. Rather
than storing the entirety of the suffix within the
suffix array, there is an index which is stored
to find the location the subsequent character.
Suffix arrays are therefore further compressed.

This way, Succinct is able to give original off-
sets within the uncompressed file quickly by di-
rectly using the compressed file.

Suffix

$

a$

ana$
anana$
banana$
na$
nana$

W N =N

Figure 3: Suffix array for the word “banana”
sorted in ascending lexicographical order, cour-
tesy of https://en.wikipedia.org/wiki/
Suffix_array

LittleLog improves upon this by querying
each shard asynchronously using multiple Suc-
cinctLogs. A SuccinctLog loads a compressed
file into memory before executing the query.
Once executed, results are returned to the user
in order of original uncompressed logfile, effec-
tively simulating the Unix grep command. Re-
sult format depends on the which API method
is called. count returns the total number of
occurrences of the query in the original file
whereas search returns full log entries satis-
fying the query. Because Succinct’s underly-
ing search algorithm returns just the offsets of
a matching query in the original file, as it is
generalized to any type of data, each log entry
must be extracted individually. LittleLog uti-
lizes Succinct’s extract method for log entry
regeneration. Leveraging the 1imit parameter
allows LittleLog to avoid excessive regenera-
tion and thus reduces overall latency. The log
entry regeneration algorithm has a internal tun-
able parameter shift, which determines how
many bytes to extract from the compressed file.
The optimal shift value depends on the average
length of log entries and can be tuned according
to each input logfile.



Queries can be fed into both querying func-
tions: count or search. Both have support for
regular expressions. The former results in the
number of occurrences of a regex string within
every shard and aggregates the result. The lat-
ter returns the full log entry satisfying a query
match given by the regular expression - simi-
lar to that of grep. Results are given back in
an asynchronous manner. The search func-
tion leverages Succinct’s regex matching capa-
bility described above, which returns offsets in
the original uncompressed file, as well as Suc-
cinct’s extract capability to generate the com-
plete log entry, thus simulating the behavior of
grep. It is recommended that logfiles maintain
timestamps within the log entries so that results
can be ordered if necessary via sorting. Most
popular log formats (CLF, NCSA, Apache) al-
ready do this. The count method itself does
not need to calculate the offsets of a query re-
sult, rather just the number of a given search
will return, and thus offers low latency.

S Experiments and Evaluation

The machine used to evaluate the performance
of LittleLog was a virtual machine hosted on
Microsoft Azure with 64 GB of memory and 8
vCPUs.

5.1 Methods

We first used a data generator to create a large
log file of roughly 17.2 GB with log entries in
the CLF format. We then proceed to shard and
compress the same input file with varying A.
After manually pre-scanning the input file to
gather a wide variety of queries, we run each
query on each compressed file (represented by
a set of compressed shards). We run queries
using LittleLog and UNIX grep sequentially to
ensure no resource competition and uniform
testing environment while only manipulating
A. All queries are run for a total of 5 trials and

the averages of these trials are shown.

5.2 Query Latency

We first tested using search. We find that
search latency depends on the total number of
results found. Reference Figure 4 and Fig-
ure 5. Queries with a very large results (high-
yield queries), exhibited different behavior than
queries with an order of magnitude less results
(low-yield queries). Low-yield queries demon-
strated improving performance as A increases,
whereas high-yield queries demonstrated the
opposite. The improving performance for low-
yield queries can be attributed to the decrease
in overhead for loading compressed files into
SuccinctLog’s, as a smaller A directly increases
the number of shards an input log is split into.
High-yield queries experiences latency multi-
ple orders of magnitude larger than low-yield
queries. Leveraging the 1imit parameter de-
creased latency by an order of magnitude, yet
high-yield queries still face minute-level laten-
cies. The bulk of this latency is due to Suc-
cinct’s underlying search function, which cal-
culates all offsets matching the query in the
original file. This latency can be completely
avoided by instead utilizing LittleLog’s count
method.

As count does not calculate the offset of the
matching line nor generate the actual log entry,
it experiences much less overhead and shows
higher performance than that of search. We
do not distinguish between high-yield and low-
yield queries when utilizing count as all these
queries demonstrate improving performance as
A increases. The largest shard size tested was
1GB. LittleLog retrieved the correct total count
for a query with more than 40 million results
in 2.8 seconds, whereas UNIX grep finished in
107.5 seconds; an improvement of over 97%.
Even in the smallest possible shard size, Lit-
tleLog completes in 15.8 seconds, an 85% im-
provement. All trials of low-yield search
queries (< 20 million) prove to be faster than
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Figure 4: Search Query Latencies On Low Result Count

their grep equivalents.

Shard Size | Compressed Size
20 MB 8.5GB
50 MB 8.7 GB
100 MB 8.9 GB
200 MB 9.1 GB
300 MB 9.2GB
500 MB 9.3GB
1 GB 9.4 GB

Table 1: Compressed Size Dependence on
Shard Size. Original File Size 17.2 GB

5.3 Compression Ratio

Table 1 shows that the compressed files are
roughly 50% of the input files. It includes the
compressed size of the entire logfile after vary-
ing shard size. Our results show that as the

shard size increases, the size of the compressed
file also increases. We believe this is due to
the combination of a wavelet tree[14] and com-
pressed suffix arrays[18, 9]. Since there are
less total strings being compressed per file, the
space needed to store next line or subsequent
string indices reduces. Roughly O(n?) bits are
required for for a file with n characters. This
agrees with the table mentioned above. Since
n* does not grow linearly, it makes sense how
smaller shard sizes result in a smaller com-
pressed file size.

5.4 Analysis and Comparison

Given the varying query latencies and compres-
sion ratios, it’s important to note a few key
points.

For search queries alone, we categorize re-
sults as either high-yield or low-yield, as there
is a significant difference in the performance



Search On Large Result Count

450

400

w
[$)]
o

w
o
(@)

Query Latency (sec)

250
200
300

2050 100 200

__________________
...................................

-4~ Result Size: 40,792,016

500 1000

Shard Size (mb)

Figure 5: Search Query Latencies On High Result Count

between the two. As Succinct’s underlying
search algorithm only returns the offsets of a
matching query in the original file, high-yield
queries face extreme overhead calculating these
offsets and regenerating complete log entries.
Even after mitigating excessive log entry regen-
eration, these queries are not efficient enough to
be used in practice. But by nature, they are in-
frequently used for analysis. Typically, useful
query results tend to be very low-yield and are
much easier to analyze. Even so, LittleLog of-
fers a more performant count method to com-
pensate for high-yield results. Although not di-
rectly considered querying, count can still be
useful to know the statistics of certain query
results in some cases. However, in all cases,
LittleLog performs better than the native UNIX

grep.

Although a smaller A results in a smaller
compressed file, this advantage in storage space
is balanced with query latency. Figure 4 shows

how, in general, query latency decreases as A
increases. This result is similar for the total oc-
currences of a certain string within the uncom-
pressed file. This tradeoff is somewhat conve-
nient to apply for practical systems. If a certain
query latency is required for high-demanding
systems, a specified A value can be used. Vice-
versa, if a certain compression ratio is desired
at the cost of some latency, a known value of A
can be used. This value of A can be calculate
by recognizing that the graphs scale logarithmi-
cally.

6 Conclusion

6.1 Future Work and Limitations

Overall, LittleLog proves to be a viable system
for log compression and querying. However,
we still would like to discuss future options and
work on LittleLog.
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Figure 6: Unix Grep Query Latencies

Firstly, we would like to focus in on fur-
ther compression. Currently, compression ra-
tios for leading compression tools such as gzip
or bzip2 receive much better compression ra-
tios. For our 17.2 GB file, gzip received an
81% compression ratio and bzip2 received an
astonishing 88% compression ratio. It would be
interesting to try and see bottlenecks within the
compression algorithm while striving to main-
tain direct querying possible.

Another area we tried to optimize on was
memory usage. Currently, LittleLog is very
heavy on memory usage due to sharding and
buffer allocation. Our attempt at this was to
include an extra parameter 1imit within the
searching functions. However, this limits the
total results that is returned, not the total results
itself. Focusing in on the byte buffer allocations
that LittleLog does in its underlying overhead
calculations can drastically reduce memory us-
age. Cutting down on this usage could make

LittleLog much more scalable.

As for practical implementations, we feel
LittleLog can be a separate entity that is incor-
porated within large scale distributed file sys-
tems. File systems currently handle any type of
file. However, seeing if one can be created or
partitioned to solely take in logs would be in-
teresting to note. Certain optimizations can be
made since the nature of the files is known.

6.2 Summary

In this paper, we presented LittleLog: a
general-purpose log compression and querying
service that allows for permanent, lossless com-
pressed storage while enabling queries directly
on the compressed log files. LittleLog has sup-
port for query on compressed data directly with
speeds faster than current industry leading tools
such as UNIX grep, while also achieving com-
petitive compression performance. Thus, Lit-
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tleLog presents itself to be a viable log com-
pression and querying service. We hope to see
it in practice some day.
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